PLAN

ELABORATION DE COUCHES MINCES D'OXYDE D'ETAIN PUR OU DOPE PAR PROCEDE PLASMA CVD BASSE PRESSION :

CARACTERISATION ENERGETIQUE ET REACTIONNELLE DE LA DECHARGE PAR TECHNIQUES SPECTROSCOPIQUES ET MODELISATION

INTRODUCTION GENERALE

1

Chapitre I: Etat de l'art sur les couches d'oxydes métalliques : Cas de l'oxyde d'étain.

INTRODUCTION	7
I) PROPRIETES PHYSICO-CHIMIQUES DE L'OXYDE D'ETAIN :	9
I-1) Définition d'un semi-conducteur :	9
I-2) Propriétés cristallographiques de l'oxyde d'étain :	12
I-3) Propriétés optiques et électriques :	14
I-4-a) Propriétés optiques:	14
I-4-b) Propriétés électriques:	15
I-4) Rôle du dopage sur les propriétés de l'oxyde d'étain.	17
I-4-a) Modifications cristallographiques :	18
I-4-b) Modifications optiques :	20
I-4-c) Modifications électriques :	21
II) APPLICATIONS DE L'OXYDE D'ETAIN :	25
<u>II-1) Vitrage à isolation thermique :</u>	25
<u>II-2) Electrodes :</u>	26
<u>II-3) Piles au lithium :</u>	26
<u>II-4) Les capteurs chimiques :</u>	27
II-5) Les applications photovoltaiques :	29
III) PROCEDES D'ELABORATION DES COUCHES D'OXYDE D'ETAIN :	32
III-1) Les méthodes de dépôt :	32
III-1-a) Le Dip Coating	32
III-1-b) L'oxydation thermique :	33
III-1-c) La Pyrolyse par Spray	35
III-1-d) La pulvérisation réactive :	36
III-1-e) Le dépôt chimique en phase vapeur (CVD – Chemical Vapor Deposition)	38
III-1-f) Le dépôt chimique en phase gazeuse assisté par plasma (PACVD).	39
III-2) Les procédés de dopage :	40
III-3) Conclusion :	41
CONCLUSION	42
REFERENCES BIBLIOGRAPHIQUES :	43

43

Chapitre 2: La technologie CVD assistée par plasma : Etude d'un plasma Ar+O₂

INTRODUCTION	50
I) GENERALITES ET PROPRIETES DES PLASMAS HORS EQUILIBRE DANS LE C	<u>CAS</u>
<u>D'UNE CONFIGURATION DIODE:</u> L 1) Cánáralitán	52 52
I-1) Generalités I-2) Choix de la décharge Radiofréquence 13 56 MHz nour la réalisation du réacteur PACV	32 /D
<u>12) Choix de la décharge Radionequênce 15.56 Witz pour la réalisation du réacteur 1776 v</u>	53
I-3) L'autopolarisation de l'électrode Haute Tension:	55
II) DESCRIPTION DU DISPOSITIF EXPERIMENTAL :	59
II-1) Le réacteur PACVD (Dépôt Chimique en phase Vapeur Assistée par Plasma):	59
II-2) Le protocole opératoire :	63
II-3) Méthodes de diagnostics de la phase plasma:	64
II-3-a) Caractérisation chimique du plasma hors équilibre par la spectrométrie de masse:	64
II-3-b) Caractérisation énergétique du plasma hors équilibre par la spectroscopie d'émission	on: 67
III) DESCRIPTION DU MODELE UTILISE :	68
III-1) Généralités et hypothèses de l'étude:	68
III-1-a) Principaux mécanismes réactionnels dans une décharge Ar:	68
III-1-b) Les principaux mécanismes réactionnels dans une décharge O_2 :	70
III-1-c) Les principaux mécanismes réactionnels dans une décharge Ar-O ₂ :	72
III-2) Les hypothèses du modèle:	74
III-2-a) Description du système réactionnel appliqué pour le modèle:	74
III-2-b) Méthode de simulation:	77
III-3) Détermination de certains paramètres expérimentaux:	78
III-3-a) Détermination de la taille des gaines:	78
III-3-b) Estimation de la puissance absorbée par le plasma:	79
III-4) Etude de la validité du modèle:	81
III-4-a) Etude par spectrométrie de masse:	81
III-4-b) Etude par spectroscopie d'émission:	84
IV) ETUDE D'UN PLASMA AR-O2: APPROCHE ENERGETIQUE	88
IV-1) Evolution de la température électronique	89
IV-2) Evolution de la température de vibration de l'azote et de l'oxygène:	93
<i>IV-2-a)</i> Cas de la température de vibration de N_2 (transition $C^3 \Pi_u$, $v' \rightarrow B^3 \Pi_g$, v''):	93
<i>IV-2-b)</i> Cas de la température de vibration de O_2^+ (1^{er} système négatif: ${}^4\Sigma_{g} - \rightarrow {}^4\Pi_u$):	95
<i>IV-2-c)</i> Evolution des températures de vibration de O_2 , O_2^+ et N_2 avec la composition du	ı
mélange plasmagène:	98
IV-3) Estimation de la température de rotation de OH et N_2^+ :	98
IV-3-a) Cas de la température de rotation de OH :	99
<i>IV-3-b)</i> Cas de la température de rotation de N_2^+ :	101
IV-3-c) Evolution de la température de rotation avec la composition :	103

V) ETUDE DE PLASMA HORS EQUILIBRE AR-O2 EN DECHARGE CAPACITIV	/ E:
APPROCHE REACTIONNELLE	103
V-1) Evolution de la nature des espèces:	104
V-2) Vitesse de production et de consommation des espèces au cœur du réacteur p	lasma hors
équilibre :	109
CONCLUSION:	111
<u>REFERENCES BIBLIOGRAPHIQUES</u> :	113

CHAPITRE 3: La Technologie PACVD Cas d'un plasma Ar-O₂-TME: Etude de la phase plasma et des couches minces d'oxyde d'étain

INTRODUCTION	120
I) IDENTIFICATION DES ESPECES PRESENTES DANS LE PLASMA :	121
<u>I-1) Dispositif expérimental utilisé :</u>	121
I-1-a) Spectroscopie optique d'émission :	121
I-1-b) Spectrométrie de masse :	122
I-2) Identification des espèces par spectroscopie optique d'émission:	122
I-3) Identification des espèces par spectrométrie de masse:	130
I-3-a) Etude par spectrométrie de masse:	130
I-3-b) Etude par GC/MS:	135
II) CARACTERISATION ENERGETIQUE DE LA DECHARGE; INFLUENCE DE I	
PUISSANCE :	138
II-1) Détermination de la température électronique :	138
II-2) Détermination de la température de vibration de N ₂ :	139
II-3) Evolution de la température de rotation:	141
II-3-a) Cas de la température de rotation de OH:	141
II-3-b) Cas de la température de rotation de N_2^+ :	142
<i>II-3-c)</i> Evolution de la température de rotation de OH et N_2^+ ; rôle de la puissance:	143
III) PROCESSUS REACTIONNELS ET ROLE DE LA PUISSANCE INTRODUITE I	DANS
LE REACTEUR PLASMA:	144
III-1) Bases de l'étude:	144
III-2) La consommation des espèces :	144
III-3) La production des espèces :	146
IV) ETUDE DES AUTRES PARAMETRES OPERATOIRES:	148
IV-1) Influence de la pression:	148
IV-1-a) Approche énergétique:	148
IV-1-b) Approche réactionnelle:	149

IV-2) Influence de la puissance de polarisation:	151
IV-2-a) Approche énergétique:	151
IV-2-b) Approche réactionnelle:	152
V) CARACTERISATION DES COUCHES MINCES D'OXYDE D'ETAIN:	156
V-1) Propriétés physico-chimiques des films déposés par plasma:	156
V-1-a) Analyses XPS:	157
V-1-b) Mesures par R.B.S:	158
V-1-c) Analyses MEB:	160
V-1-d) Analyses IRTF:	162
V-2) Propriétés électriques:	165
CONCLUSION	168
REFERENCES BIBLIOGRAPHIQUES :	170

CHAPITRE 4: Etude de la synthèse de matériaux composites: Oxyde d'étain-Fluor et Oxyde d'étain-Antimoine.

INTRODUCTION	174
<u>I) ETUDE DES MATERIAUX COMPOSITES DANS LE CAS DU FLUOR :</u>	176
I-1) Description du protocole opératoire utilisé:	176
I-2) Analyse de la phase plasma hors équilibre:	177
I-2-a) Détermination des espèces présentes dans la décharge hors équilibre :	177
<i>I-2-b)</i> Caractérisation énergétique de la décharge $Ar-O_2$ -TME en présence de SF_6 :	179
I-2-c) Caractérisation réactionnelle de la décharge $Ar-O_2$ -TME en présence de SF_6 :	182
I-3) Etude des propriétés physico-chimiques des couches composites fluor-oxyde d'étain :	186
I-3-a) Caractérisation structurale des couches SnO ₂ -Fluor: Spectroscopie XPS.	186
I-3-b) Caractérisation structurale des couches SnO ₂ -Fluor: Spectroscopie Infrarouge à	
Transformée de Fourrier.	197
I-3-c) Caractérisation optique des couches SnO_2 -Fluor: Mesure de la transmission optique	ue.
	200
I-3-d) Caractérisation morphologique des couches SnO_2 -Fluor: Microscopie Electroniqu	e à
Balayage.	203
I-4) Caractérisation électrique des couches SnO2-Fluor: Rôle de la teneur en SF6 de la	phase
<u>plasma hors équilibre :</u>	208
I-4-a) Introduction directe de SF_6 dans la décharge $Ar-O_2$ -TME:	208
I-4-b) Cas de post traitements des couches de SnO ₂ par des plasmas contenant du SF ₆ :	209
I-5) Conclusion: Matériaux composites à base d'oxyde d'étain et de fluor.	210

II) DEPOT DE COUCHES MINCES D'OXYDE D'ETAIN INCLUANT DES CLUSTERSD'ANTIMOINE :211

REFERENCES BIBLIOGRAPHIQUES:	229
CONCLUSION	227
II-5) Conclusion:	226
II-4-d) Caractérisation électrique des couches SnO2-Antimoine:	225
II-4-c) Caractérisation par Analyses XPS:	222
II-4-b) Caractérisation par Microscopie Electronique à Balayage:	220
II-4-a) Caractérisation de la surface:	218
<u>films:</u>	218
II-4) Etude de la teneur en oxygène sur la pulvérisation de l'antimoine et sur la stœchi	ométrie des
II-3-e) Conclusion:	218
II-3-d) Etude des propriétés physiques:	217
II-3-c) Etude structurale par Analyse Infrarouge:	216
II-3-b) Etude structurale par Analyses XPS:	213
II-3-a) Etude structurale par Microscopie Electronique à Balayage:	213
II-3) Etude des propriétés physico-chimiques des couches SnO ₂ -Sb:	212
II-2) Validation du procédé de pulvérisation:	211
II-1) Protocole opératoire	211

232

CONCLUSION GENERALE

ANNEXES

ANNEXE 1: DESCRIPTION DES METHODES DE DIAGNOSTICS UTILISEES.	239
I) LA SPECTROMETRIE DE MASSE:	239
Processus d'ionisation:	239
La séparation des ions par le quadripôle:	240
La détection des ions:	240
II) LA MICROSCOPIE ELECTRONIQUE A BALAYAGE; ANALYSE EDX.	240
III) LA SPECTROSCOPIE DE PHOTOELECTRONS: XPS:	241
ANNEXE 2: CALCULS SPECTROSCOPIQUES:	242
I) Calcul de la température électronique:	242
II) Calcul de la température de vibration de O_2^+ (1er système négatif: ${}^{4}\Sigma_{g} \rightarrow {}^{4}\Pi_{u}$):	244
III) Calcul de la température de vibration de $N_2(C)$:	246
IV) Calcul de la température de rotation de OH.	247
V) Mesure de la température de rotation de N_2^+ :	251
ANNEXE 5: KECAPITULATIF DES REACTIONS MISES EN JEU DANS LE MOI	<u>DELE:</u> 254
	254
ANNEXE 4: UNE PETITE HISTOIREDE THESE	256